
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/268485558

Towards joint use of side scan sonar and subbottom profiler data for the

automatic quantification of marine habitats. Case study: Lourdas gulf,

Kefalonia isl., Greece.

Conference Paper · June 2014

CITATIONS

2
READS

186

4 authors:

Some of the authors of this publication are also working on these related projects:

Contribution to the study of the Hellenic Karst View project

SASMAP View project

Elias Fakiris

University of Patras

58 PUBLICATIONS   516 CITATIONS   

SEE PROFILE

Despina Zoura

University of Leeds

10 PUBLICATIONS   33 CITATIONS   

SEE PROFILE

George Ferentinos

University of Patras

146 PUBLICATIONS   3,051 CITATIONS   

SEE PROFILE

George Papatheodorou

University of Patras

215 PUBLICATIONS   3,866 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Despina Zoura on 19 November 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/268485558_Towards_joint_use_of_side_scan_sonar_and_subbottom_profiler_data_for_the_automatic_quantification_of_marine_habitats_Case_study_Lourdas_gulf_Kefalonia_isl_Greece?enrichId=rgreq-5772ca09b78aa793a24967d43d57d8ae-XXX&enrichSource=Y292ZXJQYWdlOzI2ODQ4NTU1ODtBUzoxNjUxNzQ1NDc4NTMzMTJAMTQxNjM5MjA4OTY4MA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/268485558_Towards_joint_use_of_side_scan_sonar_and_subbottom_profiler_data_for_the_automatic_quantification_of_marine_habitats_Case_study_Lourdas_gulf_Kefalonia_isl_Greece?enrichId=rgreq-5772ca09b78aa793a24967d43d57d8ae-XXX&enrichSource=Y292ZXJQYWdlOzI2ODQ4NTU1ODtBUzoxNjUxNzQ1NDc4NTMzMTJAMTQxNjM5MjA4OTY4MA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Contribution-to-the-study-of-the-Hellenic-Karst?enrichId=rgreq-5772ca09b78aa793a24967d43d57d8ae-XXX&enrichSource=Y292ZXJQYWdlOzI2ODQ4NTU1ODtBUzoxNjUxNzQ1NDc4NTMzMTJAMTQxNjM5MjA4OTY4MA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/SASMAP?enrichId=rgreq-5772ca09b78aa793a24967d43d57d8ae-XXX&enrichSource=Y292ZXJQYWdlOzI2ODQ4NTU1ODtBUzoxNjUxNzQ1NDc4NTMzMTJAMTQxNjM5MjA4OTY4MA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-5772ca09b78aa793a24967d43d57d8ae-XXX&enrichSource=Y292ZXJQYWdlOzI2ODQ4NTU1ODtBUzoxNjUxNzQ1NDc4NTMzMTJAMTQxNjM5MjA4OTY4MA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Elias-Fakiris?enrichId=rgreq-5772ca09b78aa793a24967d43d57d8ae-XXX&enrichSource=Y292ZXJQYWdlOzI2ODQ4NTU1ODtBUzoxNjUxNzQ1NDc4NTMzMTJAMTQxNjM5MjA4OTY4MA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Elias-Fakiris?enrichId=rgreq-5772ca09b78aa793a24967d43d57d8ae-XXX&enrichSource=Y292ZXJQYWdlOzI2ODQ4NTU1ODtBUzoxNjUxNzQ1NDc4NTMzMTJAMTQxNjM5MjA4OTY4MA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University-of-Patras?enrichId=rgreq-5772ca09b78aa793a24967d43d57d8ae-XXX&enrichSource=Y292ZXJQYWdlOzI2ODQ4NTU1ODtBUzoxNjUxNzQ1NDc4NTMzMTJAMTQxNjM5MjA4OTY4MA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Elias-Fakiris?enrichId=rgreq-5772ca09b78aa793a24967d43d57d8ae-XXX&enrichSource=Y292ZXJQYWdlOzI2ODQ4NTU1ODtBUzoxNjUxNzQ1NDc4NTMzMTJAMTQxNjM5MjA4OTY4MA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Despina-Zoura-2?enrichId=rgreq-5772ca09b78aa793a24967d43d57d8ae-XXX&enrichSource=Y292ZXJQYWdlOzI2ODQ4NTU1ODtBUzoxNjUxNzQ1NDc4NTMzMTJAMTQxNjM5MjA4OTY4MA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Despina-Zoura-2?enrichId=rgreq-5772ca09b78aa793a24967d43d57d8ae-XXX&enrichSource=Y292ZXJQYWdlOzI2ODQ4NTU1ODtBUzoxNjUxNzQ1NDc4NTMzMTJAMTQxNjM5MjA4OTY4MA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Leeds?enrichId=rgreq-5772ca09b78aa793a24967d43d57d8ae-XXX&enrichSource=Y292ZXJQYWdlOzI2ODQ4NTU1ODtBUzoxNjUxNzQ1NDc4NTMzMTJAMTQxNjM5MjA4OTY4MA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Despina-Zoura-2?enrichId=rgreq-5772ca09b78aa793a24967d43d57d8ae-XXX&enrichSource=Y292ZXJQYWdlOzI2ODQ4NTU1ODtBUzoxNjUxNzQ1NDc4NTMzMTJAMTQxNjM5MjA4OTY4MA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/George-Ferentinos?enrichId=rgreq-5772ca09b78aa793a24967d43d57d8ae-XXX&enrichSource=Y292ZXJQYWdlOzI2ODQ4NTU1ODtBUzoxNjUxNzQ1NDc4NTMzMTJAMTQxNjM5MjA4OTY4MA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/George-Ferentinos?enrichId=rgreq-5772ca09b78aa793a24967d43d57d8ae-XXX&enrichSource=Y292ZXJQYWdlOzI2ODQ4NTU1ODtBUzoxNjUxNzQ1NDc4NTMzMTJAMTQxNjM5MjA4OTY4MA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University-of-Patras?enrichId=rgreq-5772ca09b78aa793a24967d43d57d8ae-XXX&enrichSource=Y292ZXJQYWdlOzI2ODQ4NTU1ODtBUzoxNjUxNzQ1NDc4NTMzMTJAMTQxNjM5MjA4OTY4MA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/George-Ferentinos?enrichId=rgreq-5772ca09b78aa793a24967d43d57d8ae-XXX&enrichSource=Y292ZXJQYWdlOzI2ODQ4NTU1ODtBUzoxNjUxNzQ1NDc4NTMzMTJAMTQxNjM5MjA4OTY4MA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/George-Papatheodorou-3?enrichId=rgreq-5772ca09b78aa793a24967d43d57d8ae-XXX&enrichSource=Y292ZXJQYWdlOzI2ODQ4NTU1ODtBUzoxNjUxNzQ1NDc4NTMzMTJAMTQxNjM5MjA4OTY4MA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/George-Papatheodorou-3?enrichId=rgreq-5772ca09b78aa793a24967d43d57d8ae-XXX&enrichSource=Y292ZXJQYWdlOzI2ODQ4NTU1ODtBUzoxNjUxNzQ1NDc4NTMzMTJAMTQxNjM5MjA4OTY4MA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University-of-Patras?enrichId=rgreq-5772ca09b78aa793a24967d43d57d8ae-XXX&enrichSource=Y292ZXJQYWdlOzI2ODQ4NTU1ODtBUzoxNjUxNzQ1NDc4NTMzMTJAMTQxNjM5MjA4OTY4MA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/George-Papatheodorou-3?enrichId=rgreq-5772ca09b78aa793a24967d43d57d8ae-XXX&enrichSource=Y292ZXJQYWdlOzI2ODQ4NTU1ODtBUzoxNjUxNzQ1NDc4NTMzMTJAMTQxNjM5MjA4OTY4MA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Despina-Zoura-2?enrichId=rgreq-5772ca09b78aa793a24967d43d57d8ae-XXX&enrichSource=Y292ZXJQYWdlOzI2ODQ4NTU1ODtBUzoxNjUxNzQ1NDc4NTMzMTJAMTQxNjM5MjA4OTY4MA%3D%3D&el=1_x_10&_esc=publicationCoverPdf


 

 TOWARDS JOINT USE OF SIDE SCAN SONAR AND SUB-
BOTTOM PROFILER DATA FOR THE AUTOMATIC 

QUANTIFICATION OF MARINE HABITATS. CASE STUDY: 
LOURDAS GULF, KEFALONIA ISL., GREECE. 

Fakiris Eliasa, Zoura Despinaa, Ferentinos Georgea, Papatheodorou Georgea 

a Laboratory of Marine Geology and Physical Oceanography, Department of Geology, 
University of Patras, 265 00 Rion, Greece. 

Abstract: Although Multi-beam Echo Sounder tends to be the preferred tool nowadays 
towards gaining knowledge about the seafloor, numerous surveys have been and are still 
being performed by simultaneously using conventional Side-Scan Sonars (SSSs) and Sub-
Bottom Profilers (SBPs). This is in respect of gaining fast, wide scale, three dimensional 
imaging of the seafloor and its substrate, extracting maximum value from a single and 
time limited survey. The combination of these two systems offer good knowledge of both 
the stratigraphy and the habitats of the seabed, aspects often linked to each other. 
However, a basic drawback is the inconsistency between their mapping scales, while SSS 
produces high resolution backscatter maps (of much higher density than MBES ones) 
while SBP produces substrata information of high vertical but very low horizontal density.  
In this work, 100 kHz SSS and 3.5 kHz SBP data, collected simultaneously during a 
geophysical survey at Lourdas gulf, Kefalonia Island, Greece, underwent post-processing 
and analysis, to extract numerous statistical features from both the seafloor and its 
substrate, towards automatic seafloor classification. The SSS records were mosaicked 
using Geocoder and the mosaic image was subjected to textural analysis, using the 
SonarClass software tool, to extract a large number of features. Unsupervised 
classification of the SSS features leaded to an accurate segmentation of the seafloor into 
homogenous regions. The SBP images were processed using multi-scale elongated 
steerable filters, to detect all seismic reflectors, and numerous features were extracted 
regarding the acoustic transparency and density of the seismic reflectors (layering) as 
well as the rugosity of the seabed. Supervised classification of the SBP features exhibited 
their high ability to discriminate between different known sea bed types, making them 
suitable for use as a substitute of traditional ground discrimination systems. The 
combination of the SBP track classes to the SSS segmentation, leaded to a full coverage - 
high detailed classification map of the study area. 

Keywords: sidescan sonar, subbottom profiler, acoustic classification, habitat mapping 
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1. INTRODUCTION – STUDY AREA 

Although Single Beam Echo Sounders (SBES) are traditionally the core for most 
automatic ground discrimination systems (AGDS), in this work, an effort to validate the 
high frequency Sub-Bottom Profiling (SBP) systems against revealing useful information 
about the seabed habitats in an automated way is realized. However, while AGDS use 
calibrated sounders, SBPs are inherently un-calibrated ones, and thus effort must be put to 
extract quantitative descriptors that are not significantly affected by variations in system 
operation setups, such as recording gains and transmitting power. Despite this 
complication, SBPs are able to reveal much more information about the seabed sediments 
and habitats than SBES, due to their penetration ability, and so the prospect of 
implementing a system to automatically quantify and classify SBP data seems appealing.    

     

 
Fig.1: a. The study area, SSS mosaic and ground truthing points and b. the expert 

clsassification map.  
 

SBES and SBP methods have a great disadvantage comparing to the swath sonar 
systems, where data is collected from the most of the seabed, that they need to 
interpolation between the ship-tracks, thus less rigorously discriminate between defined 
seabed classes. Yet, information provided by swath and single beam sonar systems regard 
totally different physical properties of the sea-bed and they both deserve to be accounted 
to gain better insight into the seafloor processes and habitats. Through SSS images one 
can delineate and describe the different seabed types and features in terms of their acoustic 
intensity and texture. On the other hand, high frequency sub-bottom profiling systems 
offer information about the roughness and the hardness of the seabed, parameters strongly 
correlated to the sediment type and its vegetation. Concurrent substrata information may 
be used to quantify the acoustic transparency and layering of the superficial sediments and 
to detect the possible substrate, which, if it is close to the seafloor, it may influence the 
seabed biota.  

In this work 3,5Khz SBP and 100Khz SSS data, collected simultaneously during a 
geophysical survey at Lourdas gulf, Kefalonia Island, Greece, are combined to produce 
full coverage classification maps. Lourdas exhibits a complex seafloor with frequent 

a b
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changes in sediment and habitat types, making it a really challenging environment for 
automatic acoustic classification processes. During the coupled SSS - SBP survey, 94.2 
km of way-lines have been carried out, insonifying a total area of 16.4 km2 (fig.1.a). The 
validation of the seabed types was realized through a 7.2 km long ground truthing survey 
using a tow camera, which, in combination to the SSS mosaic and the SBP data, leaded to 
an expert manual classification, as shown in fig.1.b, some classes of which can be merged 
to produce a rougher classification scheme (see legend in fig.1.b). According to the 
suggested methodological scheme, the SSS mosaic is firstly used to segment the seafloor 
in large homogenous areas, while descriptors extracted from the SBP records are subjected 
to supervised classification trained by data samples in proximity to the groundtruthing 
points. Full coverage classification maps are finally produced by assigning its majority 
class to each one of the segmented areas.  

2. SIDESCAN SONAR MOSAICKING AND SEGMENTATION  

Acoustic returns from SSS produce intense geometric and radiometric artefacts in the 
created backscatter mosaics, which in turn affect the accuracy of facies delineation. 
Although Geocoder [1] has mainly been designed for use with MBES backscatter data, it 
can be used as well for raw SSS data, allowing the creation of more visually consistent 
mosaics. Specifically, application of its advanced AVG, despeckle and blending options 
leaded to a drastically improved SSS mosaic in Lourdas Gulf (fig.1.a). Backscatter values 
from different acquisition lines were reduced to a common scale of scattering strength, 
while their overlapping areas were blended so that only the best quality data is kept. The 
above, in conjunction with AVG application, leaded to a beautified mosaic. 

 

 
Fig.2: Details from the two SSS segmentation scales: a. EDISON superpixels, b. fuzzy c-

means clustering and c. Validation index suggesting 9 classes. 
 
 The segmentation of the mosaicked data was performed in two different scales. The 

first involved fine scale segmentation using the mean shift method (fig.2.a), as 
implemented in the EDISON software [2]. At this stage, the segmented regions, usually 
called superpixels, are quite small and so few of them coincide with the SBP way-lines. 
We need a larger scale segmentation, the separate regions of which will still honour the 

a

b

c

Validation index 

Clustering (9 classes) 
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exact boundaries of the various sea-bottom types, while most of them will coincide with a 
considerable number of SBP points. For this, we utilized clustering of the SSS mosaic via 
textural parameters extracted from 30x30m distinct image patches. Feature extraction and 
clustering took place through the Matlab tool SonarClass [3]. It employs three feature 
extraction algorithms, namely first order grey-level statistics, grey level co-occurrence 
matrices (GLCMs) and 2D power spectrum specifications, constituting feature vectors of 
totally 11 descriptors. The clustering took place using the fuzzy c-means algorithm and the 
optimal number of classes was decided upon the Calinski-Harabasz validation index, 
which clearly suggested 9 classes (fig.2.c). For each superpixel created in the fine scale 
segmentation stage, the median value from the underlying SonarClass classes was 
estimated, to produce a higher resolution classification map. This is moreover a noise-free, 
smoother version of the raw SonarClass classification map due to the local median 
consideration. What we need at this stage is the separate homogenous areas produced by 
the clustering process rather than their class assignments. This way the output is a 
segmentation map rather than a classification one. 

3. AUTOMATIC TRACKING OF SEISMIC REFLECTORS  

A set of local (pixel wise) contrasts (cw,h,k) are defined, each extracted using couples of 
adjacent rectangular features of width w and height h, rotated at direction k (see fig.1). 
Filtering the image using such rectangular features of a single direction, results in a 
directional boundary enhancement filter. In this work, that the enhancement of prolonged 
seismic reflectors is needed, we set the feature’s dimension to a fixed w to h ratio equal to 
1:16. Thus, from now on, a certain scale a refers to a feature of dimensions w=a and 
h=a/16 spatial units, giving the ca,k local contrast. Contrasts are further normalized by 
taking their ratio to their maximum possible value, which normally is the range (R) of data 
values (e.g. 256 in the case of 8bit images). In this way, local contrast takes values 
between 0 and 1, with unity implying the maximum contrast possible. According to the 
above, the normalized local contrast (Ca,k) for a fixed rotation k and scale a, is defined as:  

 
R

yxc
yxC ka

ka

,
),( ,

,   (1)

Rotation invariant normalized local contrast of a given scale (a) is defined as the 
average (μa,n) of local contrast along a set of n directions (eq. 2). This defines a rotational 
invariant boundary enhancement filter. An additional elementary statistical parameter 
derived in the context of this work is the standard deviation (σa,n) of the contrasts along the 
n directions (equation 3): 
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The above boundary enhancement filters are dependent on the scale under 
consideration, which can decrease their efficiency against reflectors of different 
thicknesses. For this, μa,n and σa,n are averaged over a number of s successive scales, finally 
providing rotation and scale invariant boundary enhancement filters ns, , ns,  (eq. 4,5). 
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Another statistic measure considered, coefficient of variation: nsnsnsCV ,,,  , proved 
to be beneficial for the accurate tracking of the seabed (see fig.3).  
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In the context of the present work, four feature scales were chosen in a quadratic 
fashion, namely a(1-4)=4, 8, 16 and 32m and four rotations, k(1-4)=0, 45, 90, 135o. In 
order to achieve maximum computational speed, the above filters were implemented using 
Haar-like features and integral images, as described in [4]. After successively filtering an 
SBP image, detection of the seismic reflectors was performed by finding the peaks in 

ns, as a function of depth, for equidistant pings. An example of applying boundary 
enhancement filtering and seismic reflectors detection on a typical SBP image is shown in 
fig.3.  

 
Fig.3: A Raw SBP image, ),(, yxns  nsCV ,  filtering results, and the detected reflectors 

4. PARAMETERIZATION OF THE SEISMIC PROFILES 

A total number of 28 features have been extracted from equidistant points (pingwise) of 
the seismic profiles (Table 1). Five of them regard the local bathymetric profile using 
rugosity and curvatuve definitions, eighteen use ns, to quantify the distinctness and 
density of the seismic reflectors, three regard simple counting of the tracked reflectors and 
estimation of the maximum penetration ability into the sediments while finally two 
features concern the intensity change, in the raw SBP images, in the first few meters 
below the seafloor.  Table 1 gives a short description for each extracted feature.    

 
 

ns,

nsCV,Raw SBP image 

Detected reflectors 
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No Feature Description 

1 Depth 
The depth at each analyzed sample. The seabed tracking was 
performed using the depth of the first higher peak of nsCV , for the 
considered ping. 

2, 3 Std, Mn The value of ns,  and  ns,  along the tracked seabed. 

4          
5 Rug50  Rug250 The rugosity defined as the variance of the depth over a window of 

50 and 250m respectively, extending both sides the analyzed ping.  

6         
7 

Curv250, 
Curv500 

The local curvatuve, calculated as 1/r, where r is the radius of a 
circle, fitted through least squares at a bathymetric profile 250 and 
500m long respectively, extending both sides the analyzed ping. 

8 Pen The distance between the seabed and the deeper tracked seismic 
reflector. 

9 NoR The number of tracked seismic reflectors under the seabed. 

10, 11,  
12 

StdS, MeanS,  
CVS 

The mean, std and coefficient of variation of the ns,  within the 
first 2,5m below the seabed. 

13, 14, 
15 

MeanSR,StdSR,  
CVSR 

The mean, std and coefficient of variation of the ns,  peak values 
(tracked seismic reflectors) within the first 2,5m below the seabed. 

16 NoSR The number of tracked seismic reflectors within the first 2,5m below 
the seabed. 

17, 18, 
19, 20, 
21 

CVR, KurtR, 
StdR, MeanR, 
SkewR 

The mean, std, kurtosis, skewness and coefficient of variation of the 

ns,  peak values (tracked reflectors) within the penetration zone 
(the between the tracked seabed and the deeper tracked reflector. 

22, 23, 
24, 25, 
26 

CVP, MeanP, 
KurtP, StdP, 
SkewP 

The mean, std, kurtosis, skewness and coefficient of variation of the 

ns,  within the penetration zone. 

27 Ratio 
The ratio between the seismic intensity (using the raw image) of the 
first reflection zone (estimated by Knee) and a 2m thick zone below 
it.  

28 Knee 

An estimation of how prolonged (thick) the first seismic reflection 
(seabed) is. It is calculated by extracting the cumulative sum of the 
seismic signal at a 2m thick region below the seabed and finding its 
knee point (where the curve is approximated by a pair of lines).  

Table 1: The features extracted from each analyzed (pingwise) sample of the seismic 
images. 

5. RANKING AND VALIDATION OF THE SBP FEATURES TOWARDS 
SUPERVISED CLASSIFICATION 

The value of the designed parameters towards meaningfully quantifying the seabed is 
validated against their ability to produce accurate classification maps through supervised 
algorithms. Three classification algorithms, preceded by a feature selection wrapper 
method, were tested in WEKA software tool [5] against their performance about both the 
fine classification and the rough (merged classes) classification scheme. Two training sets 
were used, one consisting of a random 10% of the whole dataset (Exp.10%), labelled 
according to the expert classification map and another consisting of SBP samples that are 
in proximity to the groundtruthing points (GT training dataset). The performance of the 
classifiers was estimated using three different metrics, namely average true positive rate, 
Kappa statistic and the mean area under the ROC curves.  
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Class
ifier 

No of 
Classes  Selected features Training 

Set 
TP 

Rate 
Kappa 
statistic 

ROC 
area 

N
aï

ve
   

 
Ba

ye
s 

Fine 
classes 

1,3,4,6,17,19,23,26,27,
28 : 10 

Exp.10% 0.746 0.6942 0.955 
GT 0.542 0.4552 0.882 

Raugh 
classes 

1,2,4,7,17,18,26,27,28 : 
9 

Exp.10% 0.868 0.8058 0.975 
GT 0.746 0.6322 0.948 

Ba
ye

s 
N

et
w

or
k Fine 

classes 
1,2,3,4,5,7,11,12,17,21,

23,25,26,27,28 : 15 
Exp.10% 0.874 0.8475 0.987 

GT 0.248 0.1705 0.654 
Raugh 
classes 

1,2,3,4,7,10,16,20,21,2
3, 24,28 : 11 

Exp.10% 0.922 0.886 0.99 
GT 0.342 0.1951 0.685 

D
ec

isi
on

   
Tr

ee
 

Fine 
classes 1,2,3,5,7,9,15 : 7 Exp.10% 0.86 0.8304 0.944 

GT 0.443 0.3466 0.684 
Raugh 
classes 1,2,7,9,18,21,22,23 : 8 Exp.10% 0.915 0.874 0.964 

GT 0.744 0.6428 0.848 
Table 2: The performance of 3 classifiers, validated against two different set of classes 

(see fig.1.2) and training sets.  Exp.10% : training set using the 10% of the whole dataset, 
GT: training samples collected from SBP points in proximity to the ground truthing. 

Naive Bayes classifier, although producing simpler decision boundaries, it 
outperformed the others when using the more realistic GT training dataset. Although in the 
ideal case where ground truthing stations are randomly distributed in the study area 
(Exp.10%), Bayes Network would preform perfectly, it failed in the GT case, probably 
due to over-fitting bias. The rough classification scheme, seemed to be more easily 
validated by all classifiers, but the ROC area was significantly high even for the fine 
classification scheme, when using Naive Bayes. Accordingly, Naive Bayes is considered a 
good classifier if trained by realistic groundtruthing sample distributions. The later was 
used to produce the final automatic classification map for our area (fig.4.a). This shows 
significant similarity to the expert classification map, even though a simple classifier was 
used, trained only by samples that were close to ground truthing stations.  

 

 
Fig.4: a. The final automatic classification map, produced using Naive Bayes classifier 

and b. the GT training dataset, compared to the expert manual one. 

a b
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6. CONCLUSIONS 

Through this work it was made evident that high frequency SBP systems, like 3,5 khz 
pingers and chirps, can be successively used for automatic ground discrimination 
purposes. The suggested SBP quantification methodology proved to be suitable for 
supervised classification, indicating that at least some of the extracted features are 
meaningful. The feature selection stage revealed some certain parameters that seem to 
have higher discrimination powers. Still, many other parameters played a role in 
producing more accurate classifications. Finally, using the segmentation of the SSS 
mosaic leaded to full coverage, consistent classification maps. In the future it is important 
to test the suggested method in datasets from other areas to validate its repeatability.  
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